Degree of water saturation

Description of the sample, material:

Specific density

$$\rho_s = \frac{m_s}{V_s}$$
 [Mg/m³]

$$m_1 = \dots g \dots g \dots g$$

$$m_2 = \dots \qquad g \quad \dots \qquad g \quad \dots \qquad g$$

$$m_3$$
 = g g g

$$\rho_s = \frac{m_2 - m_1}{m_4 - m_1 + m_2 - m_3} \cdot \rho_k$$
 [Mg/m³]

$$m_4$$
 = g g g

$$T = \dots ^{\circ}C \rightarrow \rho_k = \dots Mg/m^3$$

$$\rho_s = \dots Mg/m^3$$

 m_1 – pycnometer weight

m₂ – weight of pycnometer and dried sample

m₃ – weight of pycnometer and sample with liquid

m₄ - weight of pycnometer with liquid

 ρ_k – density of liquid (temperature dependent)

$$\rho_s = Mg/ m^3$$

Water content

$$w = \frac{m_w}{m_s} \cdot 100$$
 [%]

$$m_w = m - m_s$$
 [g]

$$m_w = \dots \qquad g \dots \qquad g \dots \qquad g$$

m – total weight of the sample

mw – weight of the water in the sample

m_s – weight of the dried sample

Bulk (total) density REGULARLY SHAPED SAMPLE

$$\rho = \frac{m}{V} \quad [\text{Mg/m}^3]$$

$$V = mm^3 = m^3$$

m – weight of the sample (natural moisture)

a (d) – width of block (diameter)

b - length of block

$$\rho = Mg/m^3$$

Bulk (total) density IRREGULARLY SHAPED SAMPLE

$$\rho = \frac{m}{V} \quad [Mg/m^3]$$

m = g g g

$$m_1$$
 = g g g

$$V = \frac{m_1 - m_2}{\rho_w} - \frac{m_1 - m}{\rho_p}$$
 [m³]

$$V = m^3 m^3 m^3$$

$$\rho$$
 =..... Mg/m³

m – weight of the sample (natural moisture)

 m_1 – weight of the sample with paraffin

 m_2 – weight of the sample with paraffin under water

 ρ_w – density of water (temperature dependent)

 ρ_{p} – density of paraffin

$$\rho$$
 = Mg/m³

Degree of water saturation

$$S_r = \frac{V_w}{V_p} \cdot 100$$
 [%]

$$S_r = \frac{w \cdot \rho \cdot \rho_s / \rho_w}{\rho_s \cdot (w+1) - \rho} \quad [\%]$$